Алейникова Елена Татьяна Кузнецова Семейный психолог Практический психолог Ретрит Алтай Неврология Ясновижу Василий Данилов
full screen background image
Последнее обновление

Парализованные люди порулили инвалидным креслом силой мысли Они смогли преодолеть…

Парализованные люди порулили инвалидным креслом силой мысли
Они смогли преодолеть маршрут в комнате с оборудованием и мебелью в обычной больнице. Группа ученых из Великобритании, Германии, Италии, США и Швейцарии решила проверить гипотезу о том, что для для управления креслом неинвазивным способом очень важно, насколько хорошо пациент смог обучиться управлять нейроинтерфейсом.

Три человека с тетраплегией смогли достаточно точно управлять инвалидным креслом силой мысли, чтобы проехать на нем по комнате с мебелью и медицинским оборудованием.
( Тетраплегия (tetraplegia; тетра- + греч. plege удар. поражение; син. квадриплегия) — паралич всех четырех конечностей.).
Участники представляли, как двигают руками или ногами, а кресло в зависимости от сигнала поворачивало вправо или влево. Управление происходило через связь компьютера позади кресла с ЭЭГ-шлемом на голове участника. Результаты эксперимента опубликованы в iScience.
https://www.cell.com/iscience/fulltext/S2589-0042(22)01690-X#%20

Технологии, позволяющие связать мозг с компьютером, активно развиваются, и особенно нейроинтерфейсы важны, когда дело касается людей с инвалидностью — внедрение нейропротезов в повседневную жизнь помогает обеспечить мобильность людей с ограниченными возможностями.
https://www.sciencedirect.com/science/article/abs/pii/B9780444639349000020

Некоторые исследования уже показали успехи использования нейроинтерфейсов для протезов рук,
https://www.nature.com/articles/srep38565
экзоскелета,
https://ieeexplore.ieee.org/document/7109821
роботов телеприсутствия,
https://ieeexplore.ieee.org/document/7109829
а также инвалидных кресел, управляемых разумом.
https://ieeexplore.ieee.org/document/6476692

При разработке таких кресел используют как инвазивные, так и неинвазивные методы, которые считаются более безопасными
https://www.annualreviews.org/doi/10.1146/annurev-control-012720-093904

При инвазивном подключении пациенту вживляют в мозг электроды, и, как и любая операция, этот способ несет определенные риски и возможные осложнения. При неинвазивных методах ученые используют электроэнцефалографию для записи сигналов активности мозга. Например, чтобы управлять коляской, человек фокусируется на мерцающем свете в определенном месте. Далее интерфейс с электродов считывает и декодирует сигналы мозга, преобразует их в команду движения и кресло едет к месту мерцания. Но у такого метода тоже есть свои недостатки, например, усталость глаз или расщепление внимания. Кроме того, хотя череп и кожа, отделяющие клетки мозга от электродов, являются проводниками, сигнал может искажаться.

Группа ученых из Великобритании, Германии, Италии, США и Швейцарии под руководством Хосе дель Миллана (José del R. Millán) из Техасского университета в Остине решила проверить гипотезу о том, что для для управления креслом неинвазивным способом очень важно, насколько хорошо пациент смог обучиться управлять нейроинтерфейсом. Они взяли троих людей с травмой спинного мозга и параличом всех четырех конечностей и обучили их управлять модифицированным инвалидным креслом с электроприводом. Сначала их на протяжении значительного времени обучали взаимодействию с нейроинтерфейсом. Каждый участник носил ЭЭГ-шлем с 31 электродом, который считывал сигналы из области мозга, регулирующей движения. Эти сигналы передавались на ноутбук, закрепленный на спинке инвалидной коляски, где роботизированный интеллект преобразовывал их в движения колес. Повороту налево соответствовало представление движения обеими ногами, а повороту направо — обеими руками. В противном случае инвалидная коляска двигалась вперед. На экране отображался импровизированный руль, стрелка в центре которого указывала нужное направление. Если у участника получалось правильно послать сигнал, колеса кресла поворачивались в нужную сторону. Постепенно участники привыкали управлять креслом без подсказок направления в виде стрелок.
ВИДЕО https://www.youtube.com/watch?v=KmaUVBstFcI

Обучение проводилось три раза в неделю: первый участник занимался пять месяцев, второй — три и третий — два месяца. На первых уроках все участники демонстрировали низкую точность управления — от 43 до 55 процентов. Лучше всего в обучении показал себя первый участник — на последнем сеансе он добился контроля в 95 процентов. Третий участник также стабильно демонстрировал улучшение навыков управления (98,3 процента), вплоть до 7 сеанса, однако потом его показатели упали (74 процента на последнем сеансе). Исследователи связывают это с заменой у участника декодера в последних сеансах. У второго участника явных успехов не было, хотя он и показал стабильное владение интерфейсом на уровне средней точности 68 процентов. Также ученые заметили, что в течение обучения сигналы мозга, означающие «лево» и «право», стали более отчетливыми у участников 1 и 3.

Затем исследователи решили проверить, как участники смогут управлять креслами в реальных условиях — комнате 15 на 7 метров в больнице, где были койки, ширма и медицинское оборудование. Участники должны были объехать помещение и пройти четыре контрольные точки, включая разворот и необходимость въехать в узкий коридор. Первый участник прошел 29 экспериментальных сессий, а второй и третий участники — по 11. Из трех участников только первый и третий смогли полностью пройти маршрут и все контрольные точки. Первый участник успешно проходил последнюю контрольную точку в 80 процентах случаев, среднее время на прохождение дистанции было около 4 минут. Третий участник за примерно 6 минут проходил маршрут и смог достигнуть четвертой контрольной точки в 20 процентах случаев. А вот второй участник на достижение третьей контрольной точки тратил примерно 5 минут и проходил ее в 60 процентах случаев, но так и не смог пройти последнюю точку ни разу и завершить маршрут.

Поскольку управление осуществлялось при совместной работе разума человека и роботизированного интеллекта, ученые также провели оценку того, насколько успешно бы участники прошли маршрут без ассистирования робота (их предсказания успешности прохождения маршрута с роботом совпали с реальными результатами). Оказалось, что для первого участника общая средняя успешность прохождения маршрута снизилась бы с 95 процентов до 82, для второго — с 45 процентов до 22,5, а для третьего с 73,3 до 32,5 процентов. Исследователи обращают внимание на высокую точность управления колясками людей с параличом конечностей не в лабораторных, а в реальных условиях. Также они отмечают, что совместное управление коляской позволяет достичь эффективности и удобства использования, особенно если показания при обучении взаимодействия с нейроинтефейсом были недостаточно высоки (как у второго участника).
https://www.cell.com/iscience/fulltext/S2589-0042(22)01690-X#%20

Несмотря на ряд ограничений в исследовании, ученые считают, что использование взаимного обучения между человеком и декодером, а также внедрение роботизированного интеллекта в управление позволяет добиться лучших результатов в неинвазивном управлении инвалидными колясками.
https://nplus1.ru/news/2022/11/22/brain-machine-interface

Ранее компания Intel уже показывала инвалидное кресло, которое можно контролировать с помощью выражения лица — система способна распознавать до 10 гримас и позволяет каждой присвоить свою команду управления
https://nplus1.ru/news/2018/12/05/wheelie-7




Одно мнение к “Парализованные люди порулили инвалидным креслом силой мысли Они смогли преодолеть…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Яндекс.Метрика